Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.018
Filtrar
4.
ACS Appl Mater Interfaces ; 16(10): 12263-12276, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421240

RESUMO

Foodborne carbon dots (CDs) are generally produced during cooking and exist in food items. Generally, CDs are regarded as nontoxic materials, but several studies have gradually confirmed the cytotoxicity of CDs, such as oxidative stress, reduced cellular activity, apoptosis, etc. However, studies focusing on the health effects of long-term intake of food-borne CDs are scarce, especially in populations susceptible to metabolic disease. In this study, we reported that CDs in self-brewing beer had no effect on glucose metabolism in CHOW-fed mice but exacerbated high-fat-diet (HFD)-induced glucose metabolism disorders via the gut-liver axis. Chronic exposure to foodborne CDs increased fasting glucose levels and exacerbated liver and intestinal barrier damage in HFD-fed mice. The 16s rRNA sequencing analysis revealed that CDs significantly altered the gut microbiota composition and promoted lipopolysaccharide (LPS) synthesis-related KEGG pathways (superpathway of (Kdo)2-lipid A, Kdo transfer to lipid IVA Ill (Chlamydia), lipid IVA biosynthesis, and so on) in HFD-fed mice. Mechanically, CD exposure increased the abundance of Gram-negative bacteria (Proteobacteria and Desulfovibrionaceae), thus producing excessive endotoxin-LPS, and then LPS was transferred by the blood circulation to the liver due to the damaged intestinal barrier. In the liver, LPS promoted TLR4/NF-κB/P38 MAPK signaling, thus enhancing systemic inflammation and exacerbating HFD-induced insulin resistance. However, pretreating mice with antibiotics eliminated these effects, indicating a key role for gut microbiota in CDs exacerbating glucose metabolism disorders in HFD-fed mice. The finding herein provides new insight into the potential health risk of foodborne nanoparticles in susceptible populations by disturbing the gut-liver axis.


Assuntos
Transtornos do Metabolismo de Glucose , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Fígado/metabolismo , Homeostase , Glucose/metabolismo , Dieta , Camundongos Endogâmicos C57BL
5.
HIV Med ; 25(5): 577-586, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38240173

RESUMO

BACKGROUND: Antiretroviral therapy (ART)-associated metabolic abnormalities, including impairment of glucose metabolism, are prevalent in adults living with HIV. However, the prevalence and pathogenesis of impaired glucose metabolism in children and adolescents living with HIV, particularly in sub-Saharan Africa, are not well characterized. We investigated the prevalence of impaired glucose metabolism among children and adolescents living with perinatally infected HIV in Ghana. METHODS: In this multicentre, cross-sectional study, we recruited participants from 10 paediatric antiretroviral treatment clinics from January to June 2022 in 10 facilities in Greater Accra and Eastern regions of Ghana. We determined impaired glucose metabolism in the study sample by assessing fasting blood sugar (FBS), insulin resistance as defined by the homeostatic model assessment for insulin resistance (HOMA-IR) index and glycated haemoglobin (HbA1c) levels. The prevalence of impaired glucose metabolism using each criterion was stratified by age and sex. The phenotypic correlates of glucose metabolism markers were also assessed among age, sex, body mass index (BMI) and waist-to-hip ratio (WHR). RESULTS: We analysed data from 393 children and adolescents living with HIV aged 6-18 years. A little over half (205/393 or 52.25%) of the children were female. The mean age of the participants was 11.60 years (SD = 3.50), with 122/393 (31.00%) aged 6-9 years, 207/393 (52.67%) aged 10-15 years, and 62/393 (15.78%) aged 16-18 years. The prevalence rates of glucose impairment in the study population were 15.52% [95% confidence interval (CI): 12.26-19.45], 22.39% (95% CI: 18.54-26.78), and 26.21% (95% CI: 22.10-30.78) using HbA1c, HOMA-IR, and FBS criteria, respectively. Impaired glucose metabolism detected by FBS and HOMA-IR was higher in the older age group, whereas the prevalence of abnormal HbA1c levels was highest among the youngest age group. Age and BMI were positively associated with FBS and HOMA-IR (p < 0.001). However, there was negative correlation of WHR with HOMA-IR (p < 0.01) and HbA1c (p = 0.01). CONCLUSION: The high prevalence of impaired glucose metabolism observed among the children and adolescents living with HIV in sub-Saharan Africa is of concern as this could contribute to the development of metabolic syndrome in adulthood.


Assuntos
Glicemia , Infecções por HIV , Resistência à Insulina , Humanos , Adolescente , Feminino , Masculino , Infecções por HIV/epidemiologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/complicações , Criança , Gana/epidemiologia , Estudos Transversais , Prevalência , Glicemia/metabolismo , Glicemia/análise , Índice de Massa Corporal , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/metabolismo , Transtornos do Metabolismo de Glucose/epidemiologia
6.
J Hazard Mater ; 465: 133405, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38185084

RESUMO

Exposure to arsenic during gestation has lasting health-related effects on the developing fetus, including an increase in the risk of metabolic disease later in life. Epigenetics is a potential mechanism involved in this process. Ten-eleven translocation 2 (TET2) has been widely considered as a transferase of 5-hydroxymethylcytosine (5hmC). Here, mice were exposed, via drinking water, to arsenic or arsenic combined with ascorbic acid (AA) during gestation. For adult offspring, intrauterine arsenic exposure exhibited disorders of glucose metabolism, which are associated with DNA hydroxymethylation reprogramming of hepatic nuclear factor 4 alpha (HNF4α). Further molecular structure analysis, by SEC-UV-DAD, SEC-ICP-MS, verified that arsenic binds to the cysteine domain of TET2. Mechanistically, arsenic reduces the stability of TET2 by binding to it, resulting in the decrease of 5hmC levels in Hnf4α and subsequently inhibiting its expression. This leads to the disorders of expression of its downstream key glucose metabolism genes. Supplementation with AA blocked the reduction of TET2 and normalized the 5hmC levels of Hnf4α, thus alleviating the glucose metabolism disorders. Our study provides targets and methods for the prevention of offspring glucose metabolism abnormalities caused by intrauterine arsenic exposure.


Assuntos
Arsênio , Ácido Ascórbico , Dioxigenases , Transtornos do Metabolismo de Glucose , Animais , Camundongos , Arsênio/toxicidade , Ácido Ascórbico/uso terapêutico , Dioxigenases/metabolismo , DNA , Metilação de DNA , Proteínas de Ligação a DNA , Glucose/metabolismo , Transtornos do Metabolismo de Glucose/induzido quimicamente , Transtornos do Metabolismo de Glucose/genética , Transtornos do Metabolismo de Glucose/metabolismo , Fígado/metabolismo
7.
J Sci Food Agric ; 104(5): 3057-3068, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38057285

RESUMO

BACKGROUND: Lead (Pb) is an ancient toxic metal and is still a major public health issue. Our previous study found that Pb exposure promotes metabolic disorders in obese mice, but the molecular mechanisms remain unclear. The present study explored the effects of Pb exposure on glucose homeostasis in mice fed a normal diet (ND) and high-fat diet (HFD) from the perspective of gut microbiota. RESULTS: Pb exposure had little effect on glucose metabolism in ND mice, but exacerbated hyperglycemia and insulin resistance, and impaired glucose tolerance in HFD mice. Pb exposure impaired intestinal tight junctions and mucin expression in HFD mice, increasing intestinal permeability and inflammation. Moreover, Pb exposure altered the composition and structure of the gut microbiota and decreased short-chain fatty acids (SCFAs) levels in HFD mice. Correlation analysis revealed that the gut microbiota and SCFAs were significantly correlated with the gut barrier and glucose homeostasis. Furthermore, the fecal microbiota transplantation from Pb-exposed HFD mice resulted in glucose homeostasis imbalance, intestinal mucosal structural damage and inflammation in recipient mice. However, Pb did not exacerbate the metabolic toxicity in HFD mice under depleted gut microbiota. CONCLUSION: The findings of the present study suggest that Pb induces impairment of glucose metabolism in HFD mice by perturbing the gut microbiota. Our study offers new perspectives on the mechanisms of metabolic toxicity of heavy metals and demonstrates that the gut microbiota may be a target of action for heavy metal exposure. © 2023 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Transtornos do Metabolismo de Glucose , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Chumbo/toxicidade , Disbiose/etiologia , Disbiose/metabolismo , Camundongos Endogâmicos C57BL , Transtornos do Metabolismo de Glucose/etiologia , Ácidos Graxos Voláteis/metabolismo , Inflamação/etiologia , Glucose
8.
J Agric Food Chem ; 71(49): 19581-19591, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038344

RESUMO

Piperine (PIP), a pungent alkaloid found in black pepper, has various pharmacological effects by activating the transient receptor potential vanilloid 1 (TRPV1) receptor. In this study, the regulating effect of PIP on glucose metabolism and the underlying mechanism were examined using an insulin-resistant cell model. Results showed that PIP alleviated glucosamine (GlcN)-induced glucose metabolism disorder (from 59.19 ± 1.90 to 88.36 ± 6.57%), restored cellular redox balance (from 148.43 ± 3.52 to 110.47 ± 3.52%), improved mitochondrial function (from 63.76 ± 4.87 to 85.98 ± 5.12%), and mitigated circadian disruption in HepG2 cells via the mediation of circadian clock gene Bmal1. After the knockdown of the Trpv1 gene, the modulating effect of PIP on Bmal1-mediated glucose metabolism was weakened, indicating that PIP alleviated Bmal1-involved insulin resistance and circadian misalignment in a Trpv1-dependent manner in HepG2 cells.


Assuntos
Alcaloides , Transtornos do Metabolismo de Glucose , Humanos , Células Hep G2 , Alcaloides/farmacologia , Glucose/metabolismo
9.
Sci Total Environ ; 905: 167316, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37742977

RESUMO

Ozone (O3) is a key environmental factor for developing diabetes. Nevertheless, the underlying mechanisms remain unclear. This study aimed to investigate alterations of glycometabolism in mice after O3 exposure and the role of circadian rhythms in this process. C57BL/6 male mice were randomly assigned to O3 (0.5 ppm) or filtered air for four weeks (4 h/day). Then, hepatic tissues of mice were collected at 4 h intervals within 24 h after O3 exposure to test. The results showed that hepatic circadian rhythm genes oscillated abnormally, mainly at zeitgeber time (ZT)8 and ZT20 after O3 exposure. Furthermore, detection of glycometabolism (metabolites, enzymes, and genes) revealed that O3 caused change in the daily oscillations of glycometabolism. The serum glucose content decreased at ZT4 and ZT20, while hepatic glucose enhanced at ZT16 and ZT24(0). Both G6pc and Pck1, which are associated with hepatic gluconeogenesis, significantly increased at ZT20. O3 exposure disrupted glycometabolism by increasing gluconeogenesis and decreasing glycolysis in mice liver. Finally, correlation analysis showed that the association between Bmal1 and O3-induced disruption of glycometabolism was the strongest. The findings emphasized the interaction between adverse outcomes of circadian rhythms and glycometabolism following O3 exposure.


Assuntos
Transtornos do Metabolismo de Glucose , Ozônio , Camundongos , Masculino , Animais , Ozônio/toxicidade , Ozônio/metabolismo , Camundongos Endogâmicos C57BL , Ritmo Circadiano , Fígado/metabolismo , Glucose/metabolismo , Transtornos do Metabolismo de Glucose/metabolismo
10.
Environ Pollut ; 335: 122332, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37558200

RESUMO

Haloxyfop-P-methyl is used extensively in agricultural production, and its metabolites in soil have potentially toxic effects on aquatic ecosystems. In this study, we explored the toxicity of haloxyfop-P-methyl on Chiromantes dehaani. The results of the 21-day toxicity test showed that haloxyfop-P-methyl decreased the weight gain (WG), specific growth rate (SGR) and hepatosomatic index (HSI). In glucose metabolism, haloxyfop-P-methyl reduced pyruvate, lactate, lactate dehydrogenase and succinate dehydrogenase, but enhanced glucose-6-phosphate dehydrogenase and hexokinase. Furthermore, expression of glucose metabolism-related genes was upregulated. We cloned the full-length CdG6PDH gene, which contains a 1587 bp ORF that encoded a 528 amino acid polypeptide. In antioxidant system, haloxyfop-P-methyl increased glutathione, thioredoxin reductase and thioredoxin peroxidase activities and activated the Nrf2/ARE pathway through upregulation of ERK, JNK, PKC and Nrf2. In immunity, low concentrations haloxyfop-P-methyl, or short-term exposure, upregulated the expression of immune-related genes and enhanced immune-related enzymes activity, while high concentrations or long-term exposure inhibited immune function. In summary, haloxyfop-P-methyl inhibited the growth performance, disrupted glucose metabolism, activated the antioxidant system, and led to immunotoxicity. The results deepen our understanding of the toxicity mechanism of haloxyfop-P-methyl and provide basic biological data for the comprehensive assessment of the risk of haloxyfop-P-methyl to the environment and humans.


Assuntos
Antioxidantes , Transtornos do Metabolismo de Glucose , Humanos , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ecossistema , Glucose
11.
Acta Obstet Gynecol Scand ; 102(11): 1488-1495, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568273

RESUMO

INTRODUCTION: Current use of combined hormonal contraceptives worsens glucose tolerance and increases the risk of type 2 diabetes mellitus at late fertile age, but the impact of their former use on the risk of glucose metabolism disorders is still controversial. MATERIAL AND METHODS: This was a prospective, longitudinal birth cohort study with long-term follow-up consisting of 5889 women. The cohort population has been followed at birth, and at ages of 1, 14, 31 and 46. In total, 3280 (55.7%) women were clinically examined and 2780 also underwent a 2-h oral glucose tolerance test at age 46. Glucose metabolism indices were analyzed in former combined hormonal contraceptive users (n = 1371) and former progestin-only contraceptive users (n = 52) and in women with no history of hormonal contraceptive use (n = 253). RESULTS: Compared with women with no history of hormonal contraceptive use, those who formerly used combined hormonal contraceptives for over 10 years had an increased risk of prediabetes (odds ratio [OR] 3.9, 95% confidence interval [CI]: 1.6-9.2) but not of type 2 diabetes mellitus. Former progestin-only contraceptive use was not associated with any glucose metabolism disorders. The results persisted after adjusting for socioeconomic status, smoking, alcohol consumption, parity, body mass index and use of cholesterol-lowering medication. CONCLUSIONS: Former long-term use of combined hormonal contraceptives was associated with a significantly increased risk of prediabetes in perimenopausal women, which potentially indicates a need of screening for glucose metabolism disorders in these women.


Assuntos
Diabetes Mellitus Tipo 2 , Transtornos do Metabolismo de Glucose , Contracepção Hormonal , Estado Pré-Diabético , Feminino , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Estudos de Coortes , Anticoncepção/métodos , Anticoncepcionais Orais Combinados/efeitos adversos , Anticoncepcionais Orais Hormonais , Diabetes Mellitus Tipo 2/epidemiologia , Transtornos do Metabolismo de Glucose/induzido quimicamente , Transtornos do Metabolismo de Glucose/epidemiologia , Contracepção Hormonal/efeitos adversos , Perimenopausa , Estado Pré-Diabético/induzido quimicamente , Progestinas/efeitos adversos , Estudos Prospectivos
12.
Biochem Pharmacol ; 215: 115694, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481136

RESUMO

Lipid and glucose metabolism are critical for human activities, and their disorders can cause diabetes and obesity, two prevalent metabolic diseases. Studies suggest that the bone involved in lipid and glucose metabolism is emerging as an endocrine organ that regulates systemic metabolism through bone-derived molecules. Sclerostin, a protein mainly produced by osteocytes, has been therapeutically targeted by antibodies for treating osteoporosis owing to its ability to inhibit bone formation. Moreover, recent evidence indicates that sclerostin plays a role in lipid and glucose metabolism disorders. Although the effects of sclerostin on bone have been extensively examined and reviewed, its effects on systemic metabolism have not yet been well summarized. In this paper, we provide a systemic review of the effects of sclerostin on lipid and glucose metabolism based on in vitro and in vivo evidence, summarize the research progress on sclerostin, and prospect its potential manipulation for obesity and diabetes treatment.


Assuntos
Transtornos do Metabolismo de Glucose , Proteínas , Humanos , Obesidade , Glucose , Lipídeos
13.
FASEB J ; 37(7): e23033, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37342904

RESUMO

In the obesity context, inflammatory cytokines secreted by adipocytes lead to insulin resistance and are key to metabolic syndrome development. In our previous study, we found that the transcription factor KLF7 promoted the expression of p-p65 and IL-6 in adipocytes. However, the specific molecular mechanism remained unclear. In the present study, we found that the expression of KLF7, PKCζ, p-IκB, p-p65, and IL-6 in epididymal white adipose tissue (Epi WAT) in mice fed a high-fat diet (HFD) was significantly increased. In contrast, the expression of PKCζ, p-IκB, p-p65, and IL-6 was significantly decreased in Epi WAT of KLF7 fat conditional knockout mice. In 3T3-L1 adipocytes, KLF7 promoted the expression of IL-6 via the PKCζ/NF-κB pathway. In addition, we performed luciferase reporter and chromatin immunoprecipitation assays, which confirmed that KLF7 upregulated the expression of PKCζ transcripts in HEK-293T cells. Collectively, our results show that KLF7 promotes the expression of IL-6 by upregulating PKCζ expression and activating the NF-κB signaling pathway in adipocytes.


Assuntos
Transtornos do Metabolismo de Glucose , NF-kappa B , Animais , Camundongos , Células 3T3-L1 , Adipócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Transtornos do Metabolismo de Glucose/metabolismo , Proteínas I-kappa B/metabolismo , Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , NF-kappa B/metabolismo
14.
Sci Rep ; 13(1): 7984, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198280

RESUMO

The DOHaD theory suggests that adverse environmental factors in early life may lead to the development of metabolic diseases including diabetes and hypertension in adult offspring through epigenetic mechanisms such as DNA methylation. Folic acid (FA) is an important methyl donor in vivo and participates in DNA replication and methylation. The preliminary experimental results of our group demonstrated that lipopolysaccharide (LPS, 50 µg/kg/d) exposure during pregnancy could lead to glucose metabolism disorders in male offspring, but not female offspring; however, the effect of folic acid supplementation on glucose metabolism disorders in male offspring induced by LPS exposure remains unclear. Therefore, in this study, pregnant mice were exposed to LPS on gestational day (GD) 15-17 and were given three doses of FA supplementation (2 mg/kg, 5 mg/kg, or 40 mg/kg) from mating to lactation to explore its effect on glucose metabolism in male offspring and the potential mechanism. This study confirmed that FA supplementation of 5 mg/kg in pregnant mice improved glucose metabolism in LPS-exposed offspring during pregnancy by regulating gene expression.


Assuntos
Transtornos do Metabolismo de Glucose , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Animais , Camundongos , Masculino , Lipopolissacarídeos/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ácido Fólico/efeitos adversos , Suplementos Nutricionais , Glucose/metabolismo
15.
Nutrients ; 15(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049500

RESUMO

To explore the independent and combined effects of ESRα methylation and progesterone on impaired fasting glucose (IFG) and type 2 diabetes mellitus (T2DM), a case-control study including 901 subjects was conducted. Generalized linear models were performed to assess the independent and combined effects of ESRα methylation and progesterone on IFG or T2DM. Methylation level of cytosine-phosphoguanine (CpG) 1 in the estrogen receptor α (ESRα) gene was positively related to IFG in both men (odds ratio (OR) (95% confidence interval (CI)): 1.77 (1.05, 3.00)) and postmenopausal women (OR (95% CI): 1.82 (1.09, 3.04)), whereas the association between CpG 1 and T2DM was not significant. Positive associations of progesterone with IFG and T2DM were observed in both men (OR (95% CI): 2.03 (1.18, 3.49) and 3.00 (1.63, 5.52)) and postmenopausal women (OR (95% CI): 2.13 (1.27, 3.56) and 3.30 (1.85, 5.90)). Participants with high CpG 1 methylation plus high progesterone had an increased risk of IFG and T2DM, both in men and postmenopausal women. ESRα methylation and progesterone were positively associated with IFG, and the positive association between progesterone and T2DM was also found. Importantly, we firstly found the combined effects of ESRα methylation and progesterone on IFG and T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Transtornos do Metabolismo de Glucose , Estado Pré-Diabético , Masculino , Humanos , Feminino , Diabetes Mellitus Tipo 2/genética , Estudos de Coortes , Progesterona , Estudos de Casos e Controles , Metilação de DNA , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Glicemia/metabolismo , Estado Pré-Diabético/complicações , Fatores de Risco
16.
Zhen Ci Yan Jiu ; 48(3): 247-52, 2023 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-36951076

RESUMO

OBJECTIVE: To explore the mechanism of electroacupuncture (EA) at "Zusanli" (ST36) on improving glucose metabolism disorder in chronic restraint induced depressed rats. METHODS: A total of 30 male SD rats were randomly divided into control, model and EA groups, with 10 rats in each group. The depression model was established by chronic restraint 2.5 h each day for 4 weeks. For rats in the EA group, EA stimulation (1 mA, 2 Hz, 30 min) was applied to bilateral ST36 during the modeling period, once a day for 4 weeks. The body weight of the rats was recorded before and after modeling. The behavior of rats was observed by sugar-water preference and forced swimming after modeling. The contents of glucose and glycosylated albumin in serum were determined by biochemical method. The histopathological morphology and liver glycogen content were observed by HE and PAS staining. The expression levels of phosphatidylinositol 3-kinase (PI3K), phosphorylated (p)-PI3K (p-PI3K), protein kinase B (Akt), p-Akt, glycogen synthase kinase-3ß (GSK3ß) and p-GSK3ß proteins in liver were determined by Western blot. RESULTS: Compared with the control group, the weight increment and sugar-water preference index decreased (P<0.01), the immobile swimming time was prolonged (P<0.01), the glucose and glycosylated albumin contents in serum increased (P<0.05), the expression of p-Akt protein and the ratio of p-Akt/Akt in liver tissues decreased (P<0.001), the expression of p-GSK3ß protein and the ratio of p-GSK3ß/GSK3ß in liver tissues increased (P<0.01,P<0.001) in the model group. Compared with the model group, the weight increment and sugar-water preference index increased (P<0.05), the immobile swimming time was shortened (P<0.05), the glucose and glycosylated albumin contents in serum decreased (P<0.05), the expressions of p-PI3K and p-Akt proteins and the ratio of p-PI3K/PI3K and p-Akt/Akt in liver tissues increased (P<0.05), the expression of p-GSK3ß protein and the ratio of p-GSK3ß/GSK3ß in liver tissues decreased (P<0.01) in the EA group. HE staining showed that the structure of the hepatic lobule was intact, no obvious inflammatory cell infiltration or fibrosis was observed in the lobule and interstitium, and no abnormalities were observed in the small bile duct, portal vein and artery in the portal area. PAS staining showed that the intensity of staining from the center of the hepatic lobule to the periphery of the hepatic lobule was gradually enhanced in the blank group, that is, the glycogen-rich granules in the hepatic cells were gradually increased; most of the hepatocytes were light colored and glycogen was lost significantly in the model group; while the intensity of hepatocyte staining increased, the staining intensity of the perilobular zone was weaker than that in the blank group, and the glycogen particles partially recovered in the EA group. CONCLUSION: EA intervention can regulate glucose metabolism disorder in chronic restraint induced depressed rats through PI3K/Akt/GSK3ß signaling pathway.


Assuntos
Eletroacupuntura , Transtornos do Metabolismo de Glucose , Ratos , Masculino , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinase/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Depressão/genética , Depressão/terapia , Transdução de Sinais , Glicogênio , Glucose , Água
17.
Food Funct ; 14(3): 1662-1673, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36691893

RESUMO

Glucose metabolism disorder triggered by a high-energy diet is associated with circadian disruption in the brain, peripheral tissues and gut microbiota. The present study aims to investigate the regulating effects of capsaicin (CAP) on the diet-induced disturbances of glucose homeostasis and gut microbiota in respect of circadian rhythm-related mechanisms. Our results indicated that CAP significantly ameliorated glucose metabolism disorder in mice induced by a high-fat and high-fructose diet (HFFD). The rhythmic expressions of circadian clock genes (Bmal1, Clock, and others) and glucose metabolism-related genes (Pgc-1α, Glut2, G6pc, and Pepck) in the liver disrupted by an abnormal diet were also recovered by CAP. Microbial studies using 16S rDNA sequencing revealed that CAP modulated the structure and composition of gut microbiota and improved the circadian oscillations of Firmicutes and Bacteroidetes at the phylum level and Allobaculum, Bacteroides, Bifidobacterium, and Alistipes at the genus level. Correlation analysis indicated that a close correlation existed between intestinal microbiota, hepatic circadian gene expressions and the level of glucose metabolism-related factors, indicating that CAP could alleviate HFFD-induced disturbances of glucose metabolism and gut microbiota associated with circadian clock related mechanisms.


Assuntos
Relógios Circadianos , Microbioma Gastrointestinal , Transtornos do Metabolismo de Glucose , Animais , Camundongos , Relógios Circadianos/genética , Capsaicina/farmacologia , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Homeostase , Camundongos Endogâmicos C57BL
18.
Cell Tissue Res ; 391(1): 127-144, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36227376

RESUMO

Obesity (Ob) depicts a state of energy imbalance(s) being characterized by the accumulation of excessive fat and which predisposes to several metabolic diseases. Mesenchymal stem cells (MSCs) represent a promising option for addressing obesity and its associated metabolic co-morbidities. The present study aims at assessing the beneficial effects of human placental MSCs (P-MSCs) in mitigating Ob-associated insulin resistance (IR) and mitochondrial dysfunction both in vivo and in vitro. Under obesogenic milieu, adipocytes showed a significant reduction in glucose uptake, and impaired insulin signaling with decreased expression of UCP1 and PGC1α, suggestive of dysregulated non-shivering thermogenesis vis-a-vis mitochondrial biogenesis respectively. Furthermore, obesogenic adipocytes demonstrated impaired mitochondrial respiration and energy homeostasis evidenced by reduced oxygen consumption rate (OCR) and blunted ATP/NAD+/NADP+ production respectively. Interestingly, co-culturing adipocytes with P-MSCs activated PI3K-Akt signaling, improved glucose uptake, diminished ROS production, enhanced mitochondrial OCR, improved ATP/NAD+/NADP+ production, and promoted beiging of adipocytes evidenced by upregulated expression of PRDM16, UCP1, and PGC1α expression. In vivo, P-MSCs administration increased the peripheral blood glucose uptake and clearance, and improved insulin sensitivity and lipid profile with a coordinated increase in the ratio of ATP/ADP and NAD+ and NADP+ in the white adipose tissue (WAT), exemplified in WNIN/GR-Ob obese mutant rats. In line with in vitro findings, there was a significant reduction in adipocyte hypertrophy, increased mitochondrial staining, and thermogenesis. Our findings advocate for a therapeutic application of P-MSCs for improving glucose and energy homeostasis, i.e., probably restoring non-shivering thermogenesis towards obesity management.


Assuntos
Adipócitos , Metabolismo Energético , Glucose , Resistência à Insulina , Células-Tronco Mesenquimais , Obesidade , Placenta , Animais , Feminino , Humanos , Ratos , Trifosfato de Adenosina/metabolismo , Adipócitos/metabolismo , Glucose/metabolismo , Homeostase , Resistência à Insulina/fisiologia , Células-Tronco Mesenquimais/metabolismo , NAD/metabolismo , NADP/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Placenta/metabolismo , Transtornos do Metabolismo de Glucose/patologia , Metabolismo Energético/fisiologia
20.
Front Cell Infect Microbiol ; 12: 998600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299624

RESUMO

Periodontitis has been demonstrated to be bidirectionally associated with diabetes and has been recognized as a complication of diabetes. As a periodontal pathogen, Porphyromonas gingivalis is a possible pathogen linking periodontal disease and systemic diseases. It has also been found to be involved in the occurrence and development of diabetes. In this study, 6-week-old male C57BL/6 mice were orally administered the P. gingivalis strain ATCC381 for 22 weeks. Histological analysis of the gingival tissue and quantified analysis of alveolar bone loss were performed to evaluate periodontal destruction. Body weight, fasting glucose, glucose tolerance test (GTT), and insulin tolerance test (ITT) were used to evaluate glucose metabolism disorder. We then analyzed the expression profiles of inflammatory cytokines and chemokines in gingival tissue, the liver, and adipose tissue, as well as in serum. The results showed that mice in the P. gingivalis-administered group developed apparent gingival inflammation and more alveolar bone loss compared to the control group. After 22 weeks of P. gingivalis infection, significant differences were observed at 30 and 60 min for the GTT and at 15 min for the ITT. P. gingivalis-administered mice showed an increase in the mRNA expression levels of the pro-inflammatory cytokines (TNF-α, IL-6, IL-17, and IL-23) and chemokines (CCL2, CCL8, and CXCL10) in the gingiva and serum. The expression levels of the glucose metabolism-related genes were also changed in the liver and adipose tissue. Our results indicate that oral administration of P. gingivalis can induce changes in the inflammatory cytokines and chemokines in the gingiva and blood, can lead to alveolar bone loss and to inflammatory changes in the liver and adipose tissues, and can promote glucose metabolism disorder in mice.


Assuntos
Perda do Osso Alveolar , Transtornos do Metabolismo de Glucose , Insulinas , Periodontite , Camundongos , Masculino , Animais , Porphyromonas gingivalis/genética , Perda do Osso Alveolar/patologia , Interleucina-17 , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa , Camundongos Endogâmicos C57BL , Periodontite/metabolismo , Citocinas/genética , Glucose , RNA Mensageiro , Interleucina-23 , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...